
Two Dimensional Viewing

Basic Interactive

Programming

Basic Interactive Programming

 User controls contents,

structure, and appearance

of objects and their

displayed images via rapid

visual feedback.

Model

 Model: a pattern, plan,

representation, or description

designed to show the structure

or working of an object,

system, or concept.

Modeling

 Modeling is the process of

creating, storing and

manipulating a model of

an object or a system.

Modeling

 In Modeling, we often use a geometric
model

! i.e.. A description of an object that provides a
numerical description of its shape, size and
various other properties.

 Dimensions of the object are usually
given in units appropriate to the object:

! meters for a ship

! kilometres for a country

Modeling
 The shape of the object is often

described in terms of sub-parts, such as
circles, lines, polygons, or cubes.

 Example: Model of a house units are in
meters

6

9

6

y

x

6

9

y

x

 Instances of this object may then be
placed in various positions in a scene, or
world, scaled to different sizes, rotated,
or deformed.

 Each house is created with instances of
the same model, but with different
parameters.

Instances of Objects

2D Viewing

2D Viewing

Viewing is the process of
drawing a view of a

model on a

2-dimensional display.

2D Viewing

 The geometric description of the object
or scene provided by the model, is
converted into a set of graphical
primitives, which are displayed where
desired on a 2D display.

 The same abstract model may be viewed
in many different ways:

! e.g. faraway, near, looking down, looking up

Real World Coordinates
 It is logical to use dimensions which are

appropriate to the object e.g.
! meters for buildings

! nanometers or microns for molecules, cells, atoms

! light years for astronomy

 The objects are described with respect to their

actual physical size in the real world, and then

mappedmapped onto screenscreen co-ordinates.

 It is therefore possible to view an object at

various sizes by zooming in and out, without
actually having to change the model.

2D Viewing
 How muchHow much of the model should be drawn?

 WhereWhere should it appear on the display?

HowHow do we convert Real-world coordinates

into screen co-ordinates?

! We could have a model of a whole room, full of objects

such as chairs, tablets and students.

! We may want to view the whole room in one go, or

zoom in on one single object in the room.

! We may want to display the object or scene on the full

screen, or we may only want to display it on a portion

of the screen.

2D Viewing
 Once a model has been constructed, the

programmer can specify a view.

A 2-Dimensional view consists of twotwo
rectangles:

! A WindowWindow, given in real-world co-ordinates,
which defines the portion of the model that is to
be drawn

! A ViewportViewport given in screen co-ordinates,
which defines the portion of the screen on which
the contents of the window will be displayed

Basic Interactive Programming

 WindowWindow: What is to be viewed

 ViewportViewport: Where is to be displayed

Scene Image

Viewport

Coordinate

Representations

Coordinate Representations

 General graphics packages
are designed to be used with
Cartesian coordinate
specifications.

 Several different Cartesian
reference frame are used to
construct and display a scene.

Coordinate Representations
 Modeling coordinates: We can construct the

shape of individual objects in a scene within
separate coordinate reference frames called
modeling (local) coordinates.

Coordinate Representations
 World coordinates: Once individual object

shapes have been specified, we can place the
objects into appropriate positions within the
scene using reference frame called world
coordinate.

Coordinate Representations
 Device Coordinates: Finally, the world

coordinates description of the scene is
transferred to one or more output-device
reference frames for display, called device
(screen) coordinates.

Coordinate Representations
 Normalized Coordinates: A graphic system

first converts world coordinate positions to
normalized device coordinates, in the range 0 to
1.This makes the system independent of the
output-devices.

Coordinate Representations
 Modeling coordinates: We can construct the shape

of individual objects in a scene within separate
coordinate reference frames called modeling (local)
coordinates.

),(maxmax yx

Coordinate Representations
 An initial modeling coordinate position is

transferred to a device coordinate position
with the sequence:

 The modeling and world coordinate positions in this
transformation can be any floating values;
normalized coordinates satisfy the inequalities:

 The device coordinates are integers within the range
(0,0) to for a particular output device.

),(),(),(),(dcdcncncwcwcmcmc yxyxyxyx

10 !! ncx 10 !! ncy

),(
maxmax

yx

The Viewing Pipeline

The Viewing Pipeline
 A world coordinate area selected for display is

called window.

 An area on a display device to which a window

is mapped a viewport.

 Windows and viewports are rectangular in

standard position.

The Viewing Pipeline
 The mapping of a part of a world coordinate

scene to device coordinate is referred to as

viewing transformation or window-to-

viewport transformation or windowing

transformation.

Viewport

window-to-viewport transformation

The Viewing Pipeline
1. Construct the scene in world coordinate using the output

primitives.

2. Obtain a particular orientation for the window by set up a two

dimensional viewing coordinateviewing coordinate system in the world

coordinate, and define a window in the viewing coordinate

system. Transform descriptions in world coordinates to viewing

coordinates (clippingclipping).

The Viewing Pipeline
3. Define a viewport in normalized coordinate, and map the

viewing coordinate description of the scene to normalized

coordinate

4. (All parts lie outside the viewport are clippedclipped), and contents

of the viewport are transferred to device coordinates.

Viewing Coordinate Normalized Coordinate Device Coordinate

1

1

The Viewing Pipeline

The Viewing Pipeline
 By Changing the position of the viewport, we

can view objects at different position on the

display area of an output device.

The Viewing Pipeline
 By varying the size of viewport, we can change

the size of displayed objects (zooming).

2D Geometric

Transformations

2D Geometric Transformations
 Operations that are applied to the

geometric description of an object to
change its position, orientation or size.

Basic transformation:

 Translation

 Rotation

 Scaling

2D Translation
 2D Translation: Move a point along a

straight-line path to its new location.

P

P ’

T

x

y yx
tyytxx "#$"#$,

%
&

'
(
)

*
"%
&

'
(
)

*
#%
&

'
(
)

*
$

$

y

x

t

t

y

x

y

x

TPP "#$

2D Tranlation
 Rigid-body translation: moves objects

without deformation (every point of the object is

translated by the same amount)

Note: House shifts position relative to origin

tx = 2

ty = 3

Y

X
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

%
&

'
(
)

*
1

2

%
&

'
(
)

*
4

4

2D Rotation
 2D Rotation: Rotate the points a specified

rotation angle about the rotation axis.

 Axis is perpendicular to xy plane; specify only

rotation point (pivot point)),(rr yx

rx

ry

+

2D Rotation
 Simplify: rotate around origin: 0,0 ##

rr
yx

+

,

),(yx

)','(yx

r

r

 cos!sin sin!cos) !sin(

 sin!sin cos!cos) !cos(

rrry

rrrx

"#"#$

-#"#$

!sin,!cos ryrx ##

 cos sin

 sin cos

yxy

yxx

"#$

-#$

PRP .#$

%
&

'
(
)

* -
#

 cos sin

 sin cos
R

2D Rotation
 Rotation of a point about an arbitrary pivot position:

 The matrix expression could be modified to include

pivot coordinates by matrix addition of a column

vector whose elements contain the additive

(translational) term.

 cos)(sin)(

 sin)(cos)(

rrr

rrr

yyxxyy

yyxxxx

-"-"#$

---"#$

2D Rotation
 Rigid-body translation: Rotates objects

without deformation (every point of the object

is rotated through the same angle.

6

/
+ #

Y

X

0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

+

2D Scaling
 2D Scaling: Alters the size of an object.

 This operation can be carried out for polygons

by multiplying the coordinate values of

each vertex by scaling factors and to

produce the transformed coordinates

),(yx

x
s ys

x

y

x

y2#xs

1#ys

2D Scaling

x

y

x

y2#xs

1#ys

yx syysxx .#$.#$,

%
&

'
(
)

*
.%
&

'
(
)

*
#%
&

'
(
)

*
$

$

y

x

s

s

y

x

y

x

0

0

PSP .#$

2D Scaling
 An positive numeric values can be assigned to the

scaling factors.

 Values less than 1 reduce the size of objects, and

greater than 1 produce an enlargement.

 Uniform Scaling:Uniform Scaling:

 Differential Scaling:Differential Scaling: , used in modeling

applications.

yx
ss #

yx
ss 0

original Uniform scaling Differential scaling

yx
ss #

yx
ss 0

2D Scaling
 Scale an object moving its origin (upper right)

2D Scaling
 We can control the location of a scaled object by

choosing a position, called fixes point

 Fixes point can be chosen as one of the vertices,

the object centroid, or any other position

),(ff yx

xff sxxxx .-"#)('

yff syyyy .-"#)('

)1('

xfx sxsxx -".#

)1('

yfy sysyy -".#

2D Scaling

 The matrix expression could be modified to include

fixed coordinates.

Note: House shifts position relative to origin

Y

X
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

%
&

'
(
)

*
1

2
%
&

'
(
)

*
1

3 %
&

'
(
)

*
2

6
%
&

'
(
)

*
2

9

2

3

#

#

y

x

s

s

)1('

xfx sxsxx -".#

)1('

yfy sysyy -".#

Matrix Representations

And

Homogeneous Coordinates

Matrix Representations

 In Modeling, we perform sequences of

geometric transformation: translation,

rotation, and scaling to model components

into their proper positions.

 HowHow the matrix representations can be

reformulated so that transformation

sequences can be efficiently processed??

Matrix Representations

 We have seen:

)1('

xfx sxsxx -".#

)1('

yfy sysyy -".#

 cos)(sin)(

 sin)(cos)(

rrr

rrr

yyxxyy

yyxxxx

-"-"#$

---"#$

 The basic transformations can be

expressed in the general matrix form:

21 MPMP ".#$

Rotation:

Scaling:

Matrix Representations

 M1 is a 2×2 array containing multiplicative

factors.

 M2 is a two element column matrix containing

translation terms.

 Translation: M1 is the identity matrix.

 Rotation: M2 contains the translation terms associated with

the pivot point.

 Scaling: M2 contains the translation terms associated with

the fixed point.

21 MPMP ".#$

Matrix Representations

To produce a sequence of

transformations, we must calculate

the transformed coordinates

one step at a time.

21 MPMP ".#$

 We need to eliminate the matrix addition

associated with the translation terms in M2.

Matrix Representations

We can combine the multiplicative and

translation terms for 2D transformation

into a single matrix representation

byby

expanding 2×2 matrix to 3×3 matrix.

Matrix Representations

and

Homogeneous Coordinate

 Homogeneous Coordinate: To express any 2D

transformation as a matrix multiplication,

we represent each Cartesian coordinate

position (x,y) with the homogeneous

Coordinate triple (xh,yh,h):

h

y
y

h

x
x hh ## ,

Simply: h=1

Matrix Representations

and

Homogeneous Coordinate

(X,Y,h)

h

Matrix Representations

and

Homogeneous Coordinate

Expressing position in

homogeneous Coordinates,

(x,y,1) allows us to represent

all geometric transformation as

matrix multiplication

Matrix Representations

and

Homogeneous Coordinate

 Basic 2D transformations as 3x3 matrices:

%
%
%

&

'

(
(
(

)

*

%
%
%

&

'

(
(
(

)

*

#

%
%
%

&

'

(
(
(

)

*
$

$

1100

10

01

1

y

x

t

t

y

x

y

x

%
%
%

&

'

(
(
(

)

*

%
%
%

&

'

(
(
(

)

*

#

%
%
%

&

'

(
(
(

)

*
$

$

1100

00

00

1

y

x

s

s

y

x

y

x

%
%
%

&

'

(
(
(

)

*

%
%
%

&

'

(
(
(

)

* -

#

%
%
%

&

'

(
(
(

)

*
$

$

1100

0cossin

0sincos

1

y

x

y

x

++
++

TranslationTranslation RotationRotation

ScalingScaling

Composite

Transformation

Composite Transformation

 Combined transformations

! By matrix multiplication

 Efficiency with pre-multiplication

)))(((pSRTp 111#$ pSRTp 111#$)(

%
%
%

&

'

(
(
(

)

*
.
2
2
2

3

4

5
5
5

6

7

%
%
%

&

'

(
(
(

)

*

.

%
%
%

&

'

(
(
(

)

*
.

%
%
%

&

'

(
(
(

)

*

#

%
%
%

&

'

(
(
(

)

*

$

$

$

w

y

x

s

s

 -

t

t

w

y

x

y

x

y

x

100

00

00

100

0cossin

0sincos

100

10

01

p)(yx t,tT)(!R)(yx s,sS p"

General Pivot Point

Rotation

General Pivot Point Rotation

#
#
#

$

%

&
&
&

'

(
!)!)!!

!*!)!)!

"

#
#
#

$

%

&
&
&

'

(
)

)

+

#
#
#

$

%

&
&
&

'

(
!!

!)!

+

#
#
#

$

%

&
&
&

'

(

100

sin)cos1(cossin

sin)cos1(sincos

100

10

01

100

0cossin

0sincos

100

10

01

rr

rr

r

r

r

r

xy

yx

y

x

y

x

, - , - , - , -!"))+!+ ,,,,
rrrrrr

yxyxyx RTRT

Translation Rotation Translation

(xr,yr) (xr,yr) (xr,yr)(xr,yr)

General Fixed Point

Scaling

General Fixed Point Scaling

#
#
#

$

%

&
&
&

'

(
)

)

"

#
#
#

$

%

&
&
&

'

(
)

)

+

#
#
#

$

%

&
&
&

'

(
+

#
#
#

$

%

&
&
&

'

(

100

)1(0

)1(0

100

10

01

100

00

00

100

10

01

yry

xrx

r

rx

r

r

sys

sxs

y

x

s

s

y

x

y

, - , - , - , -
yxrrrryxrr

ssyxyxssyx ,,,,
,,

STST "))++

Translation Scaling Translation

(xr,yr) (xr,yr) (xr,yr)(xr,yr)

General Scaling

Direction

General Scaling Direction

#
#
#

$

%

&
&
&

'

(

*)

)*

"++)

100

0 cos sin sin cos)(

0 sin cos)(sin cos

) (),() (2

2

2

112

12

2

2

2

1

21

1 ssss

ssss

ss RSR

Reflection

Reflection

 Reflection: Produces a mirror image of an

object.

#
#
#

$

%

&
&
&

'

(
)

100

010

001

#
#
#

$

%

&
&
&

'

()

100

010

001

#
#
#

$

%

&
&
&

'

(
)

)

100

010

001

x

y 1

32

1’

3’2’

1

32

1’

3’ 2’

x

y

3

1’

3’ 2’

1

2

x

y

X AxisX Axis Y AxisY Axis OriginOrigin

X AxisX Axis Y AxisY Axis OriginOrigin

Reflection

#
#
#

$

%

&
&
&

'

(

100

001

010 y=x

x

y

x

y

x

y 1

32

1’

3’2’ x

y

 Reflection with respect to a line y=x

 We can drive this matrix by : Clockwise: Clockwise rotation of 45º .
Reflection about the x axis . CounterclockwiseCounterclockwise rotation of 45º

Reflection
 Reflection with respect to a line y=-x

y= -x

x

y

#
#
#

$

%

&
&
&

'

(

)

)

100

001

010

Reflection with respect to a line y=mx+b:

1. Translate the line so that it passes through the origin.

2. Rotate the onto one of the coordinate axes

3. Reflect about that axis

4. Inverse rotation

5. Inverse translation

Shear

Shear

 Shear: A transformation that distorts the

shape of an object such that transformed

shape appears as if the object were

composed of internal layers that had been

caused to slide over each other is called a

shear.

Shear
! x-direction: yyyhxx x "+*" ' ,'

(0,0) (1,0)

(1,1)(0,1) hx= 2

x

y
(3,1)

(0,0) (1,0)

(2,1)

x

y

(0,0) (1,0)

(1,1)(0,1)

(0,0)

(0,1)

(1,3)

(1,2)
hy= 2

x

y

x

y

#
#
#

$

%

&
&
&

'

(

100

010

01 xh

#
#
#

$

%

&
&
&

'

(

100

01

001

yh

! y-direction: xhyyxx y +*"" ' ,'

Shear
! x-direction shears relative to a reference line

, - yyyyhxx refx ")+*" ' ,'

! y-direction shears relative to a reference line

(0,0) (1,0)

(1,1)(0,1)

hx= 0.5
yref= -1

x

y

yref= –1 yref= –1

(0.5,0) (1.5,0)

(2,1)(1,1)

x

y

refyy "

(0,0) (1,0)
(1,1)(0,1)

hy= 0.5
xref= -1

x

y

(0,0.5)

(1,1)

(1,2)

(0,1.5)

x

y

xref= –1xref= –1

#
#
#

$

%

&
&
&

'

(+)

100

010

1 refxx yhh

refxx "
, -refy xxhyyxx)+*"" ' ,'

#
#
#

$

%

&
&
&

'

(
+)

100

1

001

refyy xhh

Transformations

Between

Coordinates Systems

Transformations Between Coordinates

Systems

 It is often requires the transformation of object

description from one coordinate system to

another.

How do we transform between two How do we transform between two

Cartesian coordinate systems?Cartesian coordinate systems?

Transformations Between

Coordinates Systems
 Rule: Transform one coordinate frames

towards the other in the opposite direction of the

representation change.

Transformations Between Coordinates

Systems

 Two Steps:

1. Translate so that the origin (x0,y0) of the x´y´

system is moved to the origin of the xy system.

2. Rotate the x´ axis onto the x axis.

Transformations Between Coordinates

Systems

#
#
#

$

%

&
&
&

'

(
)

)

"))

100

10

01

),(0

0

00 y

x

yxT

#
#
#

$

%

&
&
&

'

(

)")

100

0 cos sin

0 sin cos

) (R

),() (00 yxyxxy))+)" TRM

Transformations Between Coordinates

Systems
Alternative Method:

 Assume x´=(ux,,uy) and y´=(vx,vy) in the (x,y)

coordinate systems:

#
#
#

$

%

&
&
&

'

(
)

)

+

#
#
#

$

%

&
&
&

'

(
"

100

10

01

100

0

0

0

0

y

x

vv

uu

M
yx

yx

PP M"

TRM +"

Transformations Between Coordinates

Systems
Example:

 If V=(-1,0) then the xx´́ axis is in the positivepositive

direction yy and the rotation transformation

matrix is:

#
#
#

$

%

&
&
&

'

(
)"

100

001

010

R

Transformations Between Coordinates

Systems

 In an interactive application, it may be more

convenient to choose the direction for V relative

to position P0 than it is to specify it relative to

the xy coordinate origin.

01

01

- PP

PP
v

)
"

Viewing Coordinate

Reference Frame

Viewing Coordinate Reference Frame

 This coordinate system provides

the reference frame for specifying

the world coordinate window.

Viewing Coordinate Reference Frame

Set up the viewing coordinate:

1. Origin is selected at some world position:

2. Established the orientation. Specify a world vector V that

defines the viewing y direction.

3. Obtain the matrix for converting world to viewing coordinates

(Translate and rotate)

),(000 yx"P

TRM +"
VCWC ,

Window to Viewport

Coordinate

Transformation

Window to Viewport Coordinate

Transformation
 Select the viewport in normalized coordinate, and then object

description transferred to normalized device coordinate.

 To maintain the same relative placement in the viewport as in

the window:

minmax

min

minmax

min

minmax

min

minmax

min

ywyw

ywyw

yvyv

yvyv

xwxw

xwxw

xvxv

xvxv

)

)
"

)

)

)

)
"

)

)

Window to Viewport Coordinate

Transformation

1. Perform a scaling transformation that scales the

window area to the size of the viewport.

2. Translate the scaled window area to the position

of the vieport.

minmax

min

minmax

min

minmax

min

minmax

min

ywyw

ywyw

yvyv

yvyv

xwxw

xwxw

xvxv

xvxv

)

)
"

)

)

)

)
"

)

)

y

x

sywywyvyv

sxwxwxvxv

)(

)(

minmin

minmin

)*"

)*"

minmax

minmax

minmax

minmax

ywyw

yvyv
s

xwxw

xvxv
s

y

x

)

)
"

)

)
"

Clipping

Clipping

Clipping
 Clipping Algorithm or Clipping: Any

procedure that identifies those portion of a

picture that are either inside or outside of a

specified region of space.

 The region against which an object is to

clipped is called a clip windowclip window.

Point Clipping

Point Clipping

(x, y)

wx2wx1
wy1

wy2
maxmin

maxmin

ywyyw

xwxxw

//

//

Line Clipping

Line Clipping
 Possible relationship between line position

and a standard clipping region.

Before Clipping After Clipping

Line Clipping
 A line clipping procedure involves

several parts:

1. Determine whether line lies completely

inside the clipping window.

2. Determine whether line lies completely

outside the clipping window.

3. Perform intersection calculation with one

or more clipping boundaries.

Line Clipping
 A line with both endpoints inside all

clipping boundaries is saved ()

Before Clipping After Clipping

43PP

Line Clipping
 A line with both endpoints outside all

clipping boundaries is reject (&)

Before Clipping After Clipping

21
PP

109
PP

 If one or both endpoints outside the clipping rectangular, the

parametric representation could be used to determine values

of parameter u for intersection with the clipping boundary

coordinates.

Before Clipping After Clipping

0
1

0
2

3

)*"

//

)*"

)(

10

)(

121

121

yyuyy

u

xxuxx

Line Clipping
1. If the value of u is outside the range 0 to 1: The

line dose not enter the interior of the window at

that boundary.

2. If the value of u is within the range 0 to 1, the

line segment does cross into the clipping area.

 Clipping line segments with these

parametric tests requires a good deal of

computation, and faster approaches to

clipper are possible.

Cohen Sutherland

Line Clipping

Cohen Sutherland Line Clipping

 The method speeds up the processing

of line segments by performing initial

tests that reduce the number of

intersections that must be calculated.

Cohen Sutherland Line Clipping
 Every line endpoint is assigned a four digit

binary code, called region coderegion code, that

identifies the location of the point relative to the

boundaries of the clipping rectangle.

 Each bit position in the region code is used to indicate one of the

four relative coordinate positions of the point with respect to the

clip window. Bit 1: Left

Bit 2: Right

Bit 3: Below

Bit 4: Above

 Bit values in the region code are determined by comparing

endpoint coordinates values (x,y) to the clip boundaries. Bit 1 is

set to 1 if Bit 1:

Bit 2:

Bit 3:

Bit 4:

)(
min

xxwsign

)(maxxwxsign

)(min yywsign

)(maxywysign

min
xwx !

 Once we have established region codes for all line

endpoints, we can quickly determine lines are

completely outside or inside the clip window.

 Once we have established region codes for all line

endpoints, we can quickly determine lines are

completely outside or inside the clip window.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Lines that cannot be identified as completely inside or

outside a clip window are checked for intersection with

boundaries.

 Intersection points with a clipping

boundary can be calculated using the

slope-intercept form of the line equation.

)()(1212 xxyym "

Cohen Sutherland Line Clipping

)(11 xxmyy #"
max

min

xwx

xwx

"

"

m

yy
xx 1

1

#"

max

min

ywy

ywy

"

"

Liang barsky

Clipping

 Liang barsky Clipping: Faster line clippers, that are

based on analysis of the parametric of a line

segment:

Liang barsky Clipping

$
%

$
&

'

#"

((

#"

yuyy

u

xuxx

10

1

1

12 xxx "

12 yyy "

 When we traverse along the extended line with u increasing

from to ,

 we first move from the outside to the inside of the clipping

window’s two boundary lines (bottom and left)

 Then move from the inside to the outside of the other two

boundary lines (top and right)

Liang barsky Clipping

))

 ul: intersection the window’s left

 ub: intersection the window’s bottom

 ul: intersection the window’s right

 ur: intersection the window’s top

Liang barsky Clipping

21 uu (),,0(11 buuMaxu "),,1(2 rt uuMinu "

 Point (x,y) inside the clipping window

Liang barsky Clipping

max1min

max1min

ywyuyyw

xwxuxxw

(#(

(#(

4,3,2,1, "(kqup
kk

)(

)(

)(

)(

,

,

,

,

1max4

min13

1max2

min11

4

3

2

1

top

bottom

right

left

yywq

yyq

xxwq

xxq

yp

yp

xp

xp

 "

 "

 "

 "

"

 "

"

 "

Rewrite the four inequalities as:

 If , the line is parallel to the boundary:

if the line is completely outside (can be eliminated)

if the line is completely inside (need further consideration)

! If the extended line proceeds from the outside to the inside.

! If the extended line proceeds from the inside to the outside.

! When , u corresponding to the intersection point is

)(

)(

)(

)(

,

,

,

,

1max4

min13

1max2

min11

4

3

2

1

top

bottom

right

left

yywq

yyq

xxwq

xxq

yp

yp

xp

xp

 "

 "

 "

 "

"

 "

"

 "

0"kp

0!kq

0*kq

0!kp

0+kp

kk
pq0,

k
p

 A four step process for finding the visible portion of

the line:

1. If and for any k, eliminate the line and

stop, Otherwise proceed to the next step.

2. For all k such that , calculate . Let be

the maximum of the set containing 0 and the calculated

rr values.

Liang barsky Clipping

)(

)(

)(

)(

,

,

,

,

1max4

min13

1max2

min11

4

3

2

1

top

bottom

right

left

yywq

yyq

xxwq

xxq

yp

yp

xp

xp

 "

 "

 "

 "

"

 "

"

 "

0"kp 0!kq

0!kp
kkk pqr " 1u

 A four step process …

3. For all k such that , calculate . Let be

the minimum of the set containing 1 and the calculated

rr values.

4. If , eliminate the line since it is completely

outside the clipping window, Otherwise, use and

to calculate the endpoints of the clipped line.

Liang barsky Clipping

)(

)(

)(

)(

,

,

,

,

1max4

min13

1max2

min11

4

3

2

1

top

bottom

right

left

yywq

yyq

xxwq

xxq

yp

yp

xp

xp

 "

 "

 "

 "

"

 "

"

 "

0+kp
kkk pqr "

2u

21 uu +

1u
2u

